
MuiCSer: A Process Framework for
Multi-Disciplinary User-Centred Software

Engineering processes

Mieke Haesen1, Karin Coninx1, Jan Van den Bergh1 and Kris Luyten1

1 Hasselt University -tUL -IBBT, Expertise Centre for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium
{mieke.haesen,karin.coninx,jan.vandenbergh,kris.luyten}@uhasselt.be

Abstract. In this paper we introduce MuiCSer, a conceptual process framework
for Multi-disciplinary User-centred Software Engineering (UCSE) processes.
UCSE processes strive for the combination of basic principles and practices
from software engineering and user-centred design approaches in order to
increase the overall user experience with the resulting product. The MuiCSer
framework aims to provide a common understanding of important components
and associated activities of UCSE processes. As such, the conceptual
framework acts as a frame of reference for future research regarding various
aspects and concepts related to this kind of processes, including models,
development artefacts and tools. We present the MuiCSer process framework
and illustrate its instantiation in customized processes for the (re)design of a
system. The conceptual framework has been helpful to investigate the role of
members of a multi-disciplinary team when realizing artefacts in a model-based
approach. In particular process coverage of existing artefact transformation
tools has been studied.

Keywords: User-Centred Software Engineering, User-Centred Design, Process
Framework

1 Introduction

The perceived quality of the user experience of an interactive application is well
emphasized nowadays. It has raised attention from the HCI community for user-
centred design (UCD) approaches. Key issues in UCD processes that contribute to
the overall user experience with the resulting product are continuous attention for
the end-user needs, iterative (and possibly incremental) design and development,
and a dominant presence of evaluation with respect to external quality attributes
such as usability, accessibility and apparent performance [9]. UCD approaches have
proven their value for interactive systems development for new as well as for legacy
systems. We have the impression, however, that redesign of legacy systems places
higher demands on the process being used due to the need to capture existing
knowledge and reuse requirements from existing documentation. Besides analysis
and design artefacts such as diagrams and models related to the application back

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

end, the running system itself and manuals are valuable sources. Because diagrams
and models related to the application back end (e.g. UML diagrams) often result
from a software engineering (SE) process, there is a search to combine basic
principles and practices from the SE domain and UCD approaches in order to define
an overall process that fulfils the needs of a multi-disciplinary design team. We coin
the processes that unite both HCI and SE perspectives as “User-Centred Software
Engineering Processes” (UCSE processes).

Based on former research results, we explore extensions of model-based user
interface development approaches to bridge the gap with SE approaches such as
model-driven development. A model-based approach typically employs different
types of models, thereby conveying enough information to generate the skeletons
for concrete user interfaces. Models still tend to emphasize facilitating the more
technical phases in application development over the creative design phase and
overall development cycle. Overcoming these shortcomings in a unified HCI and
SE approach, and paying attention to multi-disciplinary teams are a necessity to
allow for a pragmatic approach and applicability of model-based techniques in real-
world projects.

To accommodate for both flexibility in selecting the techniques for one
particular UCSE process and consistency in models in consecutive developments,
we prefer starting from a conceptual process framework rather than a single,
exhaustively defined UCSE process. The conceptual process framework can be
considered as a generic process that can be customized or instantiated for the
specific design task at hand. Though UCD research in the HCI community is
focused on processes, process frameworks are gaining importance in the software
engineering community (e.g. The Eclipse Process Framework1). Therefore, we
believe this approach is helpful to strive at the same time for practical processes for
applied research and for a comparison and evaluation framework, driving research
activities regarding models, development artefacts and tools.

In this paper, we present our proposal for a UCSE process framework and detail
the tools, models and artefacts that support the approach. This process framework
has been the basis for two process instances employed during case studies, which
are also used to summarize some lessons we learned. A discussion of our current
and future work, as well as conclusions are presented.

2 The MuiCSer Process Framework

Comparable to several UCD approaches, our process framework for Multi-
disciplinary user-Centred Software engineering processes, MuiCSer, focuses on the
end-user needs during the entire SE cycle in order to optimize the user experience
provided by the software that is delivered. The user experience is typically determined
by measuring the usability, accessibility, availability of required functionality etc. of
the delivered application.

1 http://www.eclipse.org/epf/

Multi-Disciplinary User-Centred Software Engineering Process Framework

Fig. 1. Our MuiCSer process framework. The dark arrow indicates the overall design and
development direction. The light arrows indicate feedback from evaluation, verification and
validation efforts.

Based on our experiences and observations when working with multi-disciplinary
teams, we are gradually introducing model-based processes in applied research and
software development projects. Our conceptual process framework embodies UCD
with a structured Agile Software Engineering (ASE, [11]) approach and organizes the
creation of interactive software systems by a multi-disciplinary team. We will support
different models throughout processes that are derived from the framework, where
each model describes a specific aspect of an interactive system and represents the
viewpoint of one or more specific roles in the multi-disciplinary team. The need for
communication with end-users or customers results in additional models or artefacts
(e.g. low-fidelity and high-fidelity prototypes) on top of the commonly used models
in a model-driven approach. This has also a positive effect on the visibility and
traceability of the processes that are based on our process framework, in particular
when artefacts are stored in a central repository: the models and artefacts describe the
status of the system being designed at various stages, support the design decisions
made during these processes and are ready for use in the next iteration.

Fig. 1 gives an overview of the proposed process framework. Existing UCD
approaches such as GUIDE [23], Effective Prototyping [1] and Rapid Contextual
Design [8] can be represented using this framework. Likewise, when projects are
carried out following a UCSE approach, the approach that is used, can be seen as a
process that is created according to the MuiCSer process framework. Both functional

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

and non-functional requirements are tackled by the process framework and unlike
traditional software engineering processes, it supports processes with a continuous
and smooth integration between user interface design and software development. The
next paragraphs discuss the properties of the process framework we propose in more
detail.

MuiCSer processes typically start with an analysis phase in an initial iteration
where the users tasks, goals and the related objects or resources that are important to
perform these tasks are specified. If the user experience of a legacy system needs to
be optimized, the functionality of such a system can be often found in existing
manuals and also contributes to the analysis. Several notations are used to express the
results of the analysis phase: HCI experts take a user-centred approach and commonly
use domain-specific notations to express the task model and use personas to identify
the user characteristics that are important. The software engineer specifies the
required behaviour of the system with use cases and behaviour diagrams. Although
the relationship between both is clear, linking them in an engineering process remains
a difficult issue. However, when a process framework helps to define what artefacts
are important in which stages and how progress from abstract to concrete models can
be realized, this helps to identify, create and relate the required models in each stage.

During the structured interaction analysis, the results of the analysis are used to
proceed towards system interaction models and presentation models. These models
are often expressed using the UML notation, thus keeping in pace with the traditional
SE models.

Since both user needs and functional information are specified, they can both
serve as input for the low-fidelity prototyping stage, as is shown in Fig. 1. User
interface designers create mockups of the user interface, based on the information
contained in the task and interaction models, while using design guidelines and their
experience. In subsequent phases, low-fidelity prototypes are transformed into high-
fidelity prototypes, which on their turn evolve into the final user interface while each
stage is related to the artefacts created in a previous stage.

By evaluating the result of each stage, the support for user needs and goals and the
presence of required functionality is verified. If possible, an evaluation with target
users can be very useful to get feedback from the end-user directly. Because most of
the artefacts do not present a fully functional system, part of the testing takes place in
a usability lab. To evaluate some advanced prototypes, field tests can examine the
user interface in more realistic situations. If the results of a phase are not suited (e.g.
too complex) to involve an end-user during evaluation, it is still necessary to evaluate,
verify or validate the models or prototypes, e.g. in meetings with domain experts or
by performing an expert evaluation.

3 Tools and Models

In this section we discuss to what extent MuiCSer can be covered by existing tools for
the creation and transformation of artefacts and in what stages tool-support should be
improved. The current use of tools also reveals how the collaboration within multi-

Multi-Disciplinary User-Centred Software Engineering Process Framework

disciplinary teams is supported. Besides the discussion of tools, this section gives an
overview of models that can be used in processes based on MuiCSer.

Table 1. An association of tools that can be used to support MuiCSer and their accessibility for
different roles in a multi-disciplinary team.

Tools
 W

or
d

pr
oc

es
so

r [
1]

Pr

es
en

ta
tio

n
[1

]
Sp

re
ad

sh
ee

t [
1]

D

ra
w

in
g

[1
]

Pa
pe

r [
1]

PD

F
vi

ew
er

 [1
]

Pa
in

t p
ro

gr
am

 [1
]

Si
m

pl
e

pr
og

ra
m

m
in

g
 [1

]
H

TM
L

(s
ite

) e
di

to
r [

1]

A
ni

m
at

io
n

to
ol

 [1
]

A
dv

an
ce

 p
ro

gr
am

m
in

g
[1

]
C

TT
E

[1
7]

Ta

sk
Sk

et
ch

 [3
]

Vi
st

a
En

vi
ro

nm
en

t [
2]

C

an
on

Sk
et

ch
 [3

]
Te

re
sa

 [1
8]

Sk

et
ch

iX
M

L
[7

]
D

am
as

k
[1

2]

G
ra

fiX
M

L
[1

6]

G
um

m
y

[1
4]

In

tu
iK

it
[4

]

R
ol

es
 in

 a
 m

ul
ti-

di
sc

ip
in

ar
y

te
am

End-user 3 3
Purchaser,
manager of
user

3 3 3 3 3 3
Application
domain
specialist

3 3 3 3 3 3
Systems
analyst,
systems
engineer,
programmer

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Marketer,
salesperson 3 3 3 3 3 3
UI designer,
visual
designer

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Human
factors and
ergonomics
expert, HCI
specialist

3 3 3 3 3 3

Technical
author,
trainer and
support
personnel

3 3 3 3 3 3 3

3.1 Artefact transformation tools

The process framework described in the previous section has been used in practice to
support several real-life cases. During the execution of the MuiCSer processes to
develop these cases, some of which will be explained more into detail further in this
paper, we observed what tools members of the project team used to contribute in the

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

different stages of these processes. This information in combination with literature
that describes tools that fit in this process gave rise to Table 1. This table presents
different roles which can be part of a multi-disciplinary team [1, 8, 9] and the tools
associated with the role. The table shows that the leftmost tools are widespread and
accessible for different roles of the multi-disciplinary team, which is confirmed by
Campos and Nunes in [3].

Table 2. Overview of artefacts supported by artefact transformation tools.

Artefacts
Sc

en
ar

io

U
se

 c
as

e

Ta
sk

 m
od

el

Ta
sk

 O
rie

nt
ed

 S
pe

ci
fic

at
io

n

Ta
sk

 F
lo

w

D
om

ai
n

m
od

el

A
ct

iv
ity

 D
ia

gr
am

s

U
se

r I
nt

er
fa

ce
 A

rc
hi

te
ct

ur
e

Sy
st

em
 A

rc
hi

te
ct

ur
e

A
bs

tr
ac

t U
I

C
on

cr
et

e
U

I

A
rt

ef
ac

t t
ra

ns
fo

rm
at

io
n

to
ol

s

CTTE [17] 3 3 3
TaskSketch [3] 3 3 3 3
Vista [2] 3 3 3 3
CanonSketch [3] 3 3 3

Teresa [18] 3 3 3

SketchiXML [7] 3 3 3 3

Damask [12] 3

Gummy [14] 3

GrafiXML [16] 3

IntuiKit [4] 3

Table 2 provides an overview of a selection of these tools and their applicability

for creating artefacts that are used in the HCI engineering process. We use the term
artefact transformation tool to describe a tool that can be used by two or more
different roles and supports relating two artefacts or models. Such a tool allows to
progress the design and development of an interactive system involving different
roles, often by providing different views on the same artefact or model. The ways in
which a tool can manipulate, create relations or transform between artefacts and
models are summarized in [5].

Mapping these tools on the stages of MuiCSer (Fig. 1) results in the time-line
shown in Fig. 2. Most tools that are suitable for interactive, incremental and multi-
disciplinary user-centred processes are artefact transformation tools which comes as
no surprise. Fig. 2 also shows that it is possible to combine two or three tools to cover
most stages of MuiCSer. While Teresa [18] can be used to model tasks of a multi-

Multi-Disciplinary User-Centred Software Engineering Process Framework

platform application and generate a system task model, an abstract user interface and
a concrete user interface, Gummy [14] can be used by designers to add creative
aspects to the medium-to high-fidelity prototypes for multi-platform user interfaces.

Fig. 2. A timeline presenting the stages of MuiCSer and how artefact transformation tools can
be mapped on it.

The overview of tools in Fig. 2 also reveals that there is little tool support for the
transformation of the results of user studies into structured models. Furthermore,
when a new iteration takes place after a final user interface is deployed, there is no
single tool that completely covers MuiCSer. The main drawbacks of most of these
tools are their inaccessibility for non-experts and their relative immaturity for real-
world software development processes. Several of the aforementioned tools are being
increasingly used in industrial projects, so we expect this situation will improve
rapidly. SketchiXML for instance is already suitable to be used by a wider range of
roles including designers and end-users [7]. Gummy supports the roles of software
developers and designers but this tool is gradually being extended to be used by
application domain specialists [13].

The following describes different models being created, changed and transformed
during the execution of MuiCSer processes in order to support a smooth transfer
towards the final user interface. The models and tools discussed in the remainder of
this section are not required. They provide a clear idea of how MuiCSer processes can
be instantiated with concrete models, notations and tools.

3.2 Structured Interaction Analysis

Task models are frequently used to specify requirements for an application from a
user’s point of view. Most task models have an hierarchical structure, allowing a
gradual refinement of the high-level tasks and goals into fine-grained actions and
activities. A task specification for a system can be found by transforming the
requirements text and the scenarios of the personas into a hierarchical task model with
temporal operators, such as the ConcurTaskTrees notation. Although this step is not
automated, the expert performing this step uses a set of (informal) rules and is
supported by a tool such as CTTE [17].

This task model can be related to other user interface and software engineering
models expressed using e.g. UML diagrams, which are widely known by software
analysts and programmers. These user interface models can provide an alternative

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

view on the information captured in the task model [20, 24] or additional information
[21, 24].

3.3 Low-Fidelity Prototyping

Since the creativity of designers and other members of a multi-disciplinary team may
influence the user experience in positive way, MuiCSer does not imply the use of
specific tools or technologies to create low-fidelity prototypes. The first prototypes
can be created using pencil and paper or using a tool. Tools such as SketchiXML [7]
or CanonSketch [3] have the advantage that they provide support for the transition to
high-fidelity prototypes. This ability to make the transition from low-fidelity to high-
fidelity using these tools and notations is illustrated by the drawing between the low-
fidelity and the high-fidelity stage in Fig. 1.

3.4 High-Fidelity Prototyping

For the high-fidelity prototyping stage, design and development tools that support
serialisation of the user interface design to (high-level) XML-based languages are
preferred. This allows more rapid prototyping of user interfaces that support a
common set of tasks. Tools such as Gummy [14] or GrafiXML [16] even have
specific support for adapting the designs to different platforms, screen sizes or in
general different contexts of use. A loose coupling with the application logic is
preferred to enable reuse.

3.4 Final User Interface

To speed up development of the final user interface and to make it as flexible as
possible, we preferably reuse as much as possible of the developed artefacts, such as
the XML-based high-fidelity prototypes and even selected models. A flexible user
interface management system allows the use of these models at runtime. Coupling for
example the task model to the user interface descriptions allows to check for task
coverage of the user interface and even selection of a subset of features for certain
users while ensuring that all remaining tasks are still valid. Using these artefacts in the
final user interface also ensures that they are still available and up-to-date for the
development of future increments.

4 Case Studies

We explain how MuiCSer can be used by describing two MuiCSer processes that are
customized for two cases, carried out within the VIP-lab project [6] The first case
study concerns the redesign of a legacy system while the second case study presents
the approach that has been used for the design of a new system. The project team was
not limited to computer scientists but also psychologists and social scientists were

Multi-Disciplinary User-Centred Software Engineering Process Framework

involved and in some cases a graphic designer. Fig. 3 shows an overview of the
MuiCSer processes that are employed for these cases. For sake of clarity of the
presentation and to allow comparison, both processes are shown as a linear path
without emphasis on the intra-and inter-stage iterations.

4.1 NewsWizard

When a reporter is on location, he or she not only has to write an article. The biggest
challenge is often to configure a network connection to send the article to the editorial
staff. The NewsWizard prototype, developed in this case study, should ease the job of
a journalist on location by guiding him / her while making the appropriate network
connection and sending the article(s).

As recommended by MuiCSer, first the legacy system has been explored. Manuals
of the existing editor to write and send articles have been studied and the system was
demonstrated to the project team. Next journalists and photographers were observed
and interviewed by social scientists while they were collecting information and
sending it to the editorial office. Besides the comparison of the job of a contemporary
journalist and a photographer, this contextual inquiry resulted in primary and
secondary personas [22] and scenarios (Fig. 3 I.a, tool: word processor and PDF
viewer).

At the second stage of this process which concerned the structured interaction
analysis, some task models were created by developers using the Hierarchical Task
Analysis (HTA) and CTT notation (Fig. 3 I.b, tool: drawing tool and CTTE). The
verification of these task models was carried out during meetings with the project
team. The social scientists checked consistency with the observations, the personas
and the scenarios while the computer scientists examined the technical possibilities
and representatives of the news publishing agency verified the design according to the
needs of the journalists and their own expectations. The task models were refined
within two iterations. The threshold for progression is the agreement of the domain
experts and stakeholders on structure and content of the task model, scenarios and
personas.

By putting together the results of the user and task analysis and the structured
interaction analysis, it became clear that journalists mainly experience problems when
they need to send an article on location. Consequently a user interface in wizard-style
was designed to collect articles and pictures (in case the journalist is not accompanied
by a photographer), followed by sending the data successfully. The relations between
the task model and the low-fidelity prototype on paper were determined manually and
the prototype was checked for completeness with respect to the task model during
meetings, similar to the meetings held during the structured interaction analysis stage.

In order to have a prototype that could be evaluated by journalists in a usability lab,
soon the low-fidelity prototype of NewsWizard evolved into a high-fidelity prototype
(Fig. 4, tool: advance programming tool). Although this was done manually, there is a
clear one-to-one mapping from each component in the low-fidelity prototype to each
component in the high-fidelity prototype. By consequence, the high-fidelity prototype
is also complete with respect to the task model. In three iterations and increments the

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

Fig. 3. MuiCSer process instances of the NewsWizard and the mobile game for children. In
both processes the verification between steps a and b, and steps b and c was done during
brainstorm meetings within the multi-disciplinary team, while the evaluation in later stages
involved end-users during lab and field tests.

Multi-Disciplinary User-Centred Software Engineering Process Framework

NewsWizard prototype was developed and functionality was added. After each
iteration and increment the UI was evaluated by journalists in a portable usability lab
(Fig. 3 I.d). In order to evaluate the prototype in the natural environment of a reporter,
some field tests were carried out (Fig. 3 I.e). During the field tests, the participating
journalists were observed and interviewed while accomplishing a realistic assignment
on location using NewsWizard. The general observations showed that the use of
NewsWizard was much more intuitive than using the existing system. Most of the
journalists confirmed that in the future they would rather send articles from location
instead of going back to their desk if they could use the NewsWizard application.

Fig. 4. Low-and high-fidelity prototype of the NewsWizard interface. The main part of the user
interface concerns the wizard. The user can navigate between steps using arrow-buttons or tab
pages.

4.2 Mobile game for children

A second case study concerns the development of a prototype for a mobile game, and
was carried out in collaboration with local cultural and tourist organizations. The goal
of this game for children is to make educational excursions more interesting and
informative.
Since a new system had to be developed in this case study, it was impossible to
examine manuals and existing functionality. Mainly results from a user and task
analysis could contribute to the structured interaction analysis. During the user and
task analysis school groups were observed and interviewed while they were visiting
museums and zoos. It turns out that the addressed target users prefer being guided
throughout the visit in a narrative style, based on a story they can identify themselves
with. After several brainstorm sessions, the multi-disciplinary team including a
graphic designer and representatives of cultural and tourist organisations, came up
with two game concepts for a PDA application (Fig. 3 II.a, tool: word processor and
PDF viewer). The goal of one game is to save the trees in a nature resort, while the
other game challenges children visiting a mine museum to help a mine worker to have
a safe working day. Scenarios ensured that all team members had the same
understanding of the game to be designed (tool: word processor and PDF viewer).

The game scenarios proved to be very useful to structure the user tasks and to
create a task model using the CTT notation (Fig. 3 II.b, tool: CTTE). Even though

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

both games are totally different, the same user interface components would be
necessary. This resulted in the decision to create a general framework containing the
application logic for both games.

Besides the task model, other HCI engineering models were created to present the
relation between the user interface and the application logic (Fig. 3 II.b, tool: drawing
tool). The application model ensured the application logic would be suitable for both
games. The system interaction model, based on the user task and application model
gives an overview of the flow of actions carried out by the system and the user. The
abstract presentation model, is based on the preceding models and represents the user
interface components, which can be used in a Canonical Abstract Prototype (CAP)
[10]. This CAP (Fig. 5, tool: CanonSketch) is a first graphical representation of the
functional parts of the user interface, independent of the content or the story that
would be used in the game. During the verification of the models, the scenarios were
used to ensure the models did meet the requirements of the game. After the computer
scientists created these models, the task was handed over to the graphic designer. He
translated the CAPs into some low-fidelity prototypes, which evolved into a design of
the prototypes for both games (Fig. 5, tool: paint program) after adding layout and
style information.

Fig. 5. Three levels of prototypes for one specific screen. From left to right: a Canonical
Abstract prototype, a low-fidelity prototype and a high-fidelity prototype.

In order to get some early feedback of the end-users the prototypes were
interactively tested in a lab environment with materials similar to what is being used
in participatory approaches such as PICTIVE [19] (Fig. 3 II.d). The tests showed
children were amused by the game, but revealed problems concerning the size and
behaviour of buttons and the content.

Based on the test results, the design of the user interface was adjusted (tool:
animation tool), while the models of the structured interaction analysis were used for
the development of the application logic of the game (tool: advance programming
tool). The resulting high-fidelity prototypes were evaluated by children in a nature
resort and a mine museum. During these field tests few user interface problems were
detected, so we may conclude that the model-based approach, and the evaluation in
early stages influenced the high-fidelity prototype in a beneficial way.

Multi-Disciplinary User-Centred Software Engineering Process Framework

5 Lessons Learned

The case studies presented in section 4 were carried out using MuiCSer processes. In
the NewsWizard case a MuiCSer process was used for the redesign of an existing
system, while the second case study concerned the design of a new system. In both
case studies we experienced that it was hard to structure the information to get a
complete overview of the user needs. Since the usage of personas and scenarios
implies partially structured narrative information, it was necessary to transform the
information into some task models. These task models made it possible to abstract the
most important goals of the future prototype. By doing so, some information
contained in the personas and scenarios could be overlooked. Therefore, the task
models were evaluated during meetings with the computer scientists and team
members with other roles.

By carrying out different case studies we had the opportunity to fine-tune the
approach in our multi-disciplinary team. In the NewsWizard case study it became
clear that task models were understandable for all team members and thus could be
evaluated during meetings. On the other hand computer scientists experienced that the
information of task models was insufficient for the development of the high-fidelity
prototypes. During the structured interaction analysis and prototyping of the mobile
game, models presenting the links between the user interface and the application logic
were helpful to get more insight into the functional requirements. Furthermore, these
models evolved gradually into a first graphical representation, the CAP, which was
also presented to the graphic designer.

The low-fidelity prototypes of both case studies were created by putting together
the artefacts of earlier stages in MuiCSer. The design of the first prototypes was
discussed and evaluated during meetings attended by the multidisciplinary team.

End-users were asked to participate in the evaluation of high-fidelity prototypes.
Our experience from other case studies learned us that field tests give more
information on the entire user experience. By evaluating a prototype in the natural
environment of the end-user, a broader user experience is taken into account and
context dependent actions can be observed.

When comparing the processes shown in Fig. 3 we discover that both are in line
with the MuiCSer framework from the start where the user studies take place, until
the high-fidelity prototyping phase. Several artefacts were created as a result of the
process stages. This illustrates the fact that the MuiCSer framework suggests some
models and artefacts, but that the design team decides about the particular results for
the customized process at hand. All artefacts proved useful to convert artefacts in the
next phase. The conversion of these artefacts required some human intervention that
is difficult or impossible to automate.

The creation, evaluation, verification and validation of the artefacts, was carried
out using several tools. The computer scientists and designers used CTTE,
CanonSketch, drawing tools, animation tools and advance programming tools for the
development of HCI models and coded prototypes. Widespread tools such as pencil
and paper, a word processor and a PDF viewer were useful for the other artefacts as
the entire project team, including representatives of the participating companies, was
familiar with these common tools.

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

6 Ongoing and Future Work

The process framework introduced in this paper has been tested on software projects
of limited complexity and, by consequence, with a development team of limited size.
Although our tests did not include any larger software projects, customized processes
derived from this framework should be flexible enough to support the increased
complexity and team size, partly because parameters such as size of increments,
number of iterations, specific models and artefacts are decided about when
instantiating the process from the framework. Currently we are investigating how a
process instantiated by MuiCSer can be used to model and design adaptable user
interfaces for heterogeneous environments [15].

One of the main advantages of the openness of the framework with respect to
specific techniques is that different domain experts can use their own notations to
create models which can relate to models of other domain experts, in order to obtain a
complete and usable interactive system with respect to the requirements. We are
testing this conceptual framework for processes supporting multi-disciplinary teams
in various application domains, requiring different experts to collaborate. Besides the
relationship with existing UCD processes, we will investigate how software
engineering processes fit into our framework. These research activities, including
application of derived processes and generalization of existing processes for
comparison, will give rise to enhancements or extensions of the framework.

Central storage of models and artefacts as well as manual and system-guided
transitions between these products turn out to be key factors for the efficiency of the
processes and acceptability by the design team. Therefore, the design and creation of
a flexible user interface management system (UIMS) that is able to use XML-based
user interface descriptions and models is an integral part of our current work [25]. In
order to support this UIMS we plan to gradually improve the relation between the
different types of artefacts. The combination of HCI models and UML models
contributes to a smooth integration of the user interface and application logic. Putting
forward the combination of models explicitly also prevents mismatches between the
functionality provided by the application logic and the functionality accessible
through the user interface.

7 Conclusions

In this paper we introduced MuiCSer, a novel process framework, practicing
Multi-disciplinary User-Centred Software engineering in such ways that
methodologies used by developers as well as the creativity of developers are included
and a positive user experience is more likely to be obtained. Each iteration of a
MuiCSer process produces one or more prototypes to enhance the visibility of this
process and to allow continuous user involvement and evaluation. Through the case
studies, we found the explicit support for multi-disciplinary teams in our process
framework one of the strong points of our approach. The definition of the framework
stimulates the use of customized processes that pay explicit attention to consistency of
design and development artefacts throughout the different cycles of the process.

Multi-Disciplinary User-Centred Software Engineering Process Framework

Multi-disciplinarity has been a focus in the current instantiations of the MuiCSer
framework and will get additional attention in future research activities in this area.
Extending and fine tuning the framework by deriving new and existing processes, will
make it a better reference for process comparison and evaluation. Together with the
user-interface management system being developed, this will encourage systematic
studies of requirements for supporting tools for UCSE processes.

Acknowledgments. Part of the research at EDM is funded by the ERDF (European
Regional Development Fund) and the Flemish Government. The VIP-lab project (4-
BMG-II-2=37), is financed by the “Interreg Benelux-Middengebied” authorities and
co-financed by Province of Limburg (B), Province of Limburg (NL), Ministry of
Economic Affairs (NL) and Ministry of Flemish Government/Economic Affairs (B).
The MuiCSer Process Framework is also based on our experiences in IWT projects
Participate (with Alcatel-Lucent) and AMASS++ (IWT 060051).

References

1. Arnowitz J., Arent M., Berger N.: Effective Prototyping for Software Makers (The Morgan
Kaufmann Series in Interactive Technologies). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2006)

2. Brown J., Graham N., Wright T.: The vista environment for the coevolutionary design of
user interfaces. In Proc. CHI ’98, pp. 376--383, ACM Press/Addison-Wesley Publishing Co.
New York, USA (1998)

3. Campos P. and Nunes N.J.: Practitioner tools and workstyles for user-interface design. IEEE
Software, vol. 24(1), pp. 73--80 (2007)

4. Chatty S., Sire S., Vinot J., Lecoanet P., Lemort A., Mertz C.: Revisiting visual interface
programming: creating GUI tools for designers and programmers. In Proc. UIST ’04, pp.
267--276, ACM, New York, USA (2004)

5. Clerckx T., Luyten K., Coninx K.: The mapping problem back and forth: customizing
dynamic models while preserving consistency. In Task Models and Diagrams for User
Interface Design, pp. 33--42 (2004)

6. Coninx K., Haesen M., Bierhoff J.: VIP-lab: A virtual lab for ICT experience prototyping. In
Proc. Measuring Behavior 2005, pp. 585--586 (2005)

7. Coyette A., Kieffer S., Vanderdonckt J.: Multi-fidelity prototyping of user interfaces. In
Human-Computer Interaction - INTERACT 2007, 11th IFIP TC 13 International
Conference, pp. 150--164 (2007)

8. Holtzblatt K., Burns Wendell J., Wood S.: Rapid Contextual Design. A How-To Guide to
Key Techniques for User-Centred Design. Morgan Kaufmann Publishers (2005)

9. International Standards Organization: ISO 13407. Human Centred Design Process for
Interactive Systems. Geneva, Swiss (1999)

10.Constantine L.: Canonical abstract prototypes for abstract visual and interaction design. In
Proc. DSV-IS 2003, volume 2844 of LNCS, pp. 1--15. Springer (2003)

11.Larman C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley (2003)
12.Lin J., Landay J.A.: Employing patterns and layers for early-stage design and prototyping of

cross-device user interfaces. In Proc. CHI ’08, April (2008)
13.Luyten K., Meskens J., Vermeulen J., Coninx K.: Meta-GUI-builders: Generating domain-

specific interface builders for multi-device user interface creation. In CHI ’08: extended
abstracts on Human factors in computing systems, New York, USA, ACM (2008)

Mieke Haesen, Karin Coninx, Jan Van den Bergh and Kris Luyten

14.Meskens J., Vermeulen J., Luyten K., and Coninx K.: Gummy for multi-platform user
interface designs: Shape me, multiply me, fix me, use me. In Proc. AVI ’08 (2008)

15.Meskens J., Haesen M., Luyten K, Coninx K.: User-Centered Adaptation of User Interfaces
for Heterogeneous Environments, To appear in Advances in Semantic Media Adaptation
and Personalisation - CRC Press Edited Book, (2008)

16.Michotte B., Vanderdonckt J.: A multi-target user interface builder based on UsiXML. In
Proc. ICAS2008, Los Alamitos, USA, IEEE Computer Society Press (2008)

17.Mori G., Paternò F., Santoro C.: CTTE: support for developing and analyzing task models
for interactive system design. IEEE Transactions on Software Engineering, vol. 28(8), pp.
797--813 (2002)

18.Mori G., Paternò, Santoro C.: Design and development of multidevice user interfaces
through multiple logical descriptions. IEEE Transactions on Software Engineering, vol.
30(8), pp. 507--520 (2004)

19.Muller M.J.: Pictive – an exploration in participatory design. In Proc. CHI ’91, pp. 225--
231, ACM Press, New York, USA (1991)

20.Nobrega L., Nunes N.J., Coelho H.: Mapping ConcurTaskTrees into UML 2.0. In Proc.
DSV-IS 05, vol. 3941, pp. 237--248, Springer (2005)

21.Nunes N.J., e Cunha J.F.: Towards a UML profile for interaction design: the wisdom
approach. In The Unified Modeling Language. Advancing the Standard, vol. 1939, pp. 101--
116, Springer (2000)

22.Pruitt J., Adlin T.: The Persona Lifecycle : Keeping People in Mind Throughout Product
Design, Morgan Kaufmann (2006)

23.Redmond-Pyle D., Moore A.: Graphical User Interface Design and Evaluation. Prentice
Hall, London (1995)

24.Van den Bergh J., Coninx K.: Towards Modeling Context-Sensitive Interactive
Applications: the Context-Sensitive User Interface Profile (CUP). In Proc. SoftVis ’05, pp.
87--94, New York, USA, ACM Press (2005)

25.Van den Bergh J., Haesen M., Luyten K., Coninx K., Notelaers S.: Toward Multi-
disciplinary Model-Based (Re)Design of Sustainable User Interfaces. In Proc. DSV-IS 2008,
Springer (2008)

